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Life’s Operating Instructions 

!  In 1953, James Watson and Francis Crick 
introduced an elegant double-helical model for the 
structure of deoxyribonucleic acid, or DNA 

!  Hereditary information is encoded in DNA and 
reproduced in all cells of the body 

!  This DNA program directs the development of 
biochemical, anatomical, physiological, and 
(to some extent) behavioral traits 
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Figure 16.1 
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Figure 16.1a 
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!  DNA is copied during DNA replication, and cells 
can repair their DNA 
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Concept 16.1: DNA is the genetic material 

!  Early in the 20th century, the identification of the 
molecules of inheritance loomed as a major 
challenge to biologists 
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The Search for the Genetic Material: Scientific 
Inquiry 
!  When T. H. Morgan’s group showed that genes 

are located on chromosomes, the two components 
of chromosomes—DNA and protein—became 
candidates for the genetic material 

!  The role of DNA in heredity was first discovered 
by studying bacteria and the viruses that 
infect them 
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Evidence That DNA Can Transform Bacteria 

!  The discovery of the genetic role of DNA began 
with research by Frederick Griffith in 1928 

!  Griffith worked with two strains of a bacterium, one 
pathogenic and one harmless 
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!  When he mixed heat-killed remains of the 
pathogenic strain with living cells of the harmless 
strain, some living cells became pathogenic 

!  He called this phenomenon transformation, now 
defined as a change in genotype and phenotype 
due to assimilation of foreign DNA 
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Figure 16.2 
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!  In 1944, Oswald Avery, Maclyn McCarty, and 
Colin MacLeod announced that the transforming 
substance was DNA 

!  Many biologists remained skeptical, mainly 
because little was known about DNA 
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Evidence That Viral DNA Can Program Cells 

!  More evidence for DNA as the genetic material 
came from studies of viruses that infect bacteria 

!  Such viruses, called bacteriophages (or phages), 
are widely used in molecular genetics research 

!  A virus is DNA (sometimes RNA) enclosed by a 
protective coat, often simply protein 
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Figure 16.3 
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Animation: Phage T2 Reproductive Cycle 
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!  In 1952, Alfred Hershey and Martha Chase 
showed that DNA is the genetic material of a 
phage known as T2 

!  They designed an experiment showing that only 
one of the two components of T2 (DNA or protein) 
enters an E. coli cell during infection 

!  They concluded that the injected DNA of the 
phage provides the genetic information 
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Figure 16.4 
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Figure 16.4a 
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Figure 16.4b 
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Animation: Hershey-Chase Experiment 
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Additional Evidence That DNA Is the Genetic 
Material 
!  It was known that DNA is a polymer of nucleotides, 

each consisting of a nitrogenous base, a sugar, 
and a phosphate group 

!  In 1950, Erwin Chargaff reported that DNA 
composition varies from one species to the next 

!  This evidence of diversity made DNA a more 
credible candidate for the genetic material 
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Figure 16.5 
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Animation: DNA and RNA Structure 
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!  Two findings became known as Chargaff’s rules 

!  The base composition of DNA varies between 
species 

!  In any species the number of A and T bases are 
equal and the number of G and C bases are equal 

!  The basis for these rules was not understood until 
the discovery of the double helix 
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Building a Structural Model of DNA: Scientific 
Inquiry 
!  After DNA was accepted as the genetic material, 

the challenge was to determine how its structure 
accounts for its role in heredity 

!  Maurice Wilkins and Rosalind Franklin were using 
a technique called X-ray crystallography to study 
molecular structure 

!  Franklin produced a picture of the DNA molecule 
using this technique 
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Figure 16.6 
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Figure 16.6a 

(a) Rosalind Franklin 

26

© 2014 Pearson Education, Inc. 

Figure 16.6b 

(b) Franklin’s X-ray diffraction 
 photograph of DNA 
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!  Franklin’s X-ray crystallographic images of DNA 
enabled Watson to deduce that DNA was helical  

!  The X-ray images also enabled Watson to deduce 
the width of the helix and the spacing of the 
nitrogenous bases 

!  The pattern in the photo suggested that the DNA 
molecule was made up of two strands, forming a 
double helix 
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Figure 16.7 
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Figure 16.7a 
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Figure 16.7b 
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Figure 16.7c 
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Animation: DNA Double Helix 
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Video: Stick Model of DNA (Deoxyribonucleic 
Acid) 
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Video: Surface Model of DNA (Deoxyribonucleic 
Acid) 
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!  Watson and Crick built models of a double helix to 
conform to the X-rays and chemistry of DNA 

!  Franklin had concluded that there were two outer 
sugar-phosphate backbones, with the nitrogenous 
bases paired in the molecule’s interior 

!  Watson built a model in which the backbones were 
antiparallel (their subunits run in opposite 
directions)  
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!  At first, Watson and Crick thought the bases 
paired like with like (A with A, and so on), but such 
pairings did not result in a uniform width  

!  Instead, pairing a purine with a pyrimidine resulted 
in a uniform width consistent with the X-ray data 
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Figure 16.UN02 
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!  Watson and Crick reasoned that the pairing was 
more specific, dictated by the base structures 

!  They determined that adenine (A) paired only with 
thymine (T), and guanine (G) paired only with 
cytosine (C) 

!  The Watson-Crick model explains Chargaff’s 
rules: in any organism the amount of A = T, and 
the amount of G = C 
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Figure 16.8 
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Concept 16.2: Many proteins work together in 
DNA replication and repair 
!  The relationship between structure and function is 

manifest in the double helix 

!  Watson and Crick noted that the specific base 
pairing suggested a possible copying mechanism 
for genetic material 
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The Basic Principle: Base Pairing to a Template 
Strand 
!  Since the two strands of DNA are complementary, 

each strand acts as a template for building a new 
strand in replication 

!  In DNA replication, the parent molecule unwinds, 
and two new daughter strands are built based on 
base-pairing rules 
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Figure 16.9-1 
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Figure 16.9-2 
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Figure 16.9-3 
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!  Watson and Crick’s semiconservative model of 
replication predicts that when a double helix 
replicates, each daughter molecule will have one 
old strand (derived or “conserved” from the parent 
molecule) and one newly made strand 

!  Competing models were the conservative model 
(the two parent strands rejoin) and the dispersive 
model (each strand is a mix of old and new) 
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Figure 16.10 
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!  Experiments by Matthew Meselson and Franklin 
Stahl supported the semiconservative model  

!  They labeled the nucleotides of the old strands 
with a heavy isotope of nitrogen, while any new 
nucleotides were labeled with a lighter isotope 
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!  The first replication produced a band of hybrid 
DNA, eliminating the conservative model 

!  A second replication produced both light and 
hybrid DNA, eliminating the dispersive model and 
supporting the semiconservative model 
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Figure 16.11 
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Figure 16.11a 
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Figure 16.11b 
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DNA Replication: A Closer Look 

!  The copying of DNA is remarkable in its speed and 
accuracy 

!  More than a dozen enzymes and other proteins 
participate in DNA replication 
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Getting Started 

!  Replication begins at particular sites called origins 
of replication, where the two DNA strands are 
separated, opening up a replication “bubble” 

!  A eukaryotic chromosome may have hundreds or 
even thousands of origins of replication 

!  Replication proceeds in both directions from each 
origin, until the entire molecule is copied 
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Figure 16.12 
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Figure 16.12a 
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Figure 16.12aa 
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Figure 16.12b 
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Figure 16.12ba 
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Animation: Origins of Replication 
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!  At the end of each replication bubble is a 
replication fork, a Y-shaped region where 
new DNA strands are elongating 

!  Helicases are enzymes that untwist the double 
helix at the replication forks 

!  Single-strand binding proteins bind to and 
stabilize single-stranded DNA 

!  Topoisomerase corrects “overwinding” ahead of 
replication forks by breaking, swiveling, and 
rejoining DNA strands 61
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Figure 16.13 
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!  DNA polymerases cannot initiate synthesis of a 
polynucleotide; they can only add nucleotides to 
an existing 3′ end 

!  The initial nucleotide strand is a short RNA primer 
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!  An enzyme called primase can start an RNA 
chain from scratch and adds RNA nucleotides one 
at a time using the parental DNA as a template 

!  The primer is short (5–10 nucleotides long), and 
the 3′ end serves as the starting point for the new 
DNA strand 
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Synthesizing a New DNA Strand 

!  Enzymes called DNA polymerases catalyze the 
elongation of new DNA at a replication fork 

!  Most DNA polymerases require a primer and a 
DNA template strand 

!  The rate of elongation is about 500 nucleotides per 
second in bacteria and 50 per second in human 
cells 
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!  Each nucleotide that is added to a growing DNA 
strand is a nucleoside triphosphate 

!  dATP supplies adenine to DNA and is similar to 
the ATP of energy metabolism 

!  The difference is in their sugars: dATP has 
deoxyribose while ATP has ribose 

!  As each monomer of dATP joins the DNA strand, it 
loses two phosphate groups as a molecule of 
pyrophosphate 
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Figure 16.14 
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Antiparallel Elongation 

!  The antiparallel structure of the double helix 
affects replication 

!  DNA polymerases add nucleotides only to the free 
3′ end of a growing strand; therefore, a new DNA 
strand can elongate only in the 5′ to 3′ direction 
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Figure 16.15 
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Figure 16.15a 
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Figure 16.15b 
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Animation: Leading Strand 
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!  Along one template strand of DNA, the DNA 
polymerase synthesizes a leading strand 
continuously, moving toward the replication fork 
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!  To elongate the other new strand, called the 
lagging strand, DNA polymerase must work in 
the direction away from the replication fork 

!  The lagging strand is synthesized as a series of 
segments called Okazaki fragments, which are 
joined together by DNA ligase 
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Figure 16.16 
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Figure 16.16a 
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Figure 16.16b-1 
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Figure 16.16b-2 
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Figure 16.16b-3 
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Figure 16.16c-2 
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Figure 16.16c-3 
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Animation: Lagging Strand 
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Figure 16.17 
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Figure 16.17a 
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Figure 16.17b 
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Figure 16.17c 
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Animation: DNA Replication Overview 
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Animation: DNA Replication Review 

89

© 2014 Pearson Education, Inc. 

Table 16.1 
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Table 16.1a 
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Table 16.1b 
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The DNA Replication Complex 

!  The proteins that participate in DNA replication 
form a large complex, a “DNA replication 
machine” 

!  The DNA replication machine may be stationary 
during the replication process 

!  Recent studies support a model in which DNA 
polymerase molecules “reel in” parental DNA and 
“extrude” newly made daughter DNA molecules 
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Figure 16.18 
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BioFlix: DNA Replication 
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Proofreading and Repairing DNA 

!  DNA polymerases proofread newly made DNA, 
replacing any incorrect nucleotides 

!  In mismatch repair of DNA, repair enzymes 
correct errors in base pairing 

!  DNA can be damaged by exposure to harmful 
chemical or physical agents such as cigarette 
smoke and X-rays; it can also undergo 
spontaneous changes 

!  In nucleotide excision repair, a nuclease cuts 
out and replaces damaged stretches of DNA 96
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Figure 16.19-1 
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Figure 16.19-2 
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Figure 16.19-3 
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Evolutionary Significance of Altered DNA 
Nucleotides 
!  Error rate after proofreading repair is low but 

not zero 

!  Sequence changes may become permanent and 
can be passed on to the next generation 

!  These changes (mutations) are the source of the 
genetic variation upon which natural selection 
operates 
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Replicating the Ends of DNA Molecules 

!  Limitations of DNA polymerase create problems 
for the linear DNA of eukaryotic chromosomes 

!  The usual replication machinery provides no way 
to complete the 5′ ends, so repeated rounds of 
replication produce shorter DNA molecules with 
uneven ends 

!  This is not a problem for prokaryotes, most of 
which have circular chromosomes 
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Figure 16.20 
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Figure 16.20a 
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Figure 16.20b 
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!  Eukaryotic chromosomal DNA molecules have 
special nucleotide sequences at their ends called 
telomeres 

!  Telomeres do not prevent the shortening of DNA 
molecules, but they do postpone the erosion of 
genes near the ends of DNA molecules 

!  It has been proposed that the shortening of 
telomeres is connected to aging 
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Figure 16.21 
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!  If chromosomes of germ cells became shorter in 
every cell cycle, essential genes would eventually 
be missing from the gametes they produce 

!  An enzyme called telomerase catalyzes the 
lengthening of telomeres in germ cells 
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!  The shortening of telomeres might protect cells 
from cancerous growth by limiting the number of 
cell divisions 

!  There is evidence of telomerase activity in cancer 
cells, which may allow cancer cells to persist 
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Concept 16.3: A chromosome consists of a DNA 
molecule packed together with proteins 
!  The bacterial chromosome is a double-stranded, 

circular DNA molecule associated with a small 
amount of protein 

!  Eukaryotic chromosomes have linear DNA 
molecules associated with a large amount 
of protein 

!  In a bacterium, the DNA is “supercoiled” and 
found in a region of the cell called the nucleoid 
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!  In the eukaryotic cell, DNA is precisely combined 
with proteins in a complex called chromatin 

!  Chromosomes fit into the nucleus through an 
elaborate, multilevel system of packing 
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Figure 16.22 
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Figure 16.22a 
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Figure 16.22aa 
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Figure 16.22ab 
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Figure 16.22b 
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Figure 16.22ba 
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Figure 16.22bb 
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Figure 16.22bc 
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Animation: DNA Packing 
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Video: Cartoon and Stick Model of a 
Nucleosomal Particle 
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!  Chromatin undergoes changes in packing during 
the cell cycle 

!  At interphase, some chromatin is organized into a 
10-nm fiber, but much is compacted into a 30-nm 
fiber, through folding and looping 

!  Interphase chromosomes occupy specific 
restricted regions in the nucleus and the fibers of 
different chromosomes do not become entangled 
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Figure 16.23 
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Figure 16.23a 
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Figure 16.23b 
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Figure 16.23c 

5 µm 
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!  Most chromatin is loosely packed in the nucleus 
during interphase and condenses prior to mitosis 

!  Loosely packed chromatin is called euchromatin 

!  During interphase a few regions of chromatin 
(centromeres and telomeres) are highly 
condensed into heterochromatin 

!  Dense packing of the heterochromatin makes it 
difficult for the cell to express genetic information 
coded in these regions 
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!  Histones can undergo chemical modifications that 
result in changes in chromatin organization 
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Figure 16.UN01 

Base Percentage 

Source of DNA Adenine  Guanine  Cytosine  Thymine 

Sea urchin  32.8  17.7  17.3  32.1   
Salmon  29.7  20.8  20.4  29.1   
Wheat  28.1  21.8  22.7    
E. coli  24.7  26.0     
Human  30.4     30.1 
Ox  29.0      
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Figure 16.UN02 

Purine + purine: too wide 

Pyrimidine + pyrimidine: too narrow 

Purine + pyrimidine: width 
consistent with X-ray data 

129

© 2014 Pearson Education, Inc. 

Figure 16.UN03 
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Figure 16.UN04 
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Figure 16.UN05 
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Figure 16.UN06 
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