

Concept 4.1: Organic chemistry is the study of carbon compounds

- Organic chemistry is the study of compounds that contain carbon
- Organic compounds range from simple molecules to colossal ones
- Most organic compounds contain hydrogen atoms in addition to carbon atoms

© 2014 Pearson Education, Inc

- Pioneers of organic chemistry helped shift the mainstream of biological thought from vitalism to mechanism
- Mechanism is the view that physical and chemical laws govern all natural phenomena

0 2014 Pearson Education,

- The electron configuration of carbon gives it covalent compatibility with many different elements
- The valences of carbon and its most frequent partners (hydrogen, oxygen, and nitrogen) are the building code for the architecture of living molecules

0 2014 Pearson Education. In

Carbon: The Backbone of Life

- Living organisms consist mostly of carbon-based compounds
- Carbon is unparalleled in its ability to form large, complex, and varied molecules
- Proteins, DNA, carbohydrates, and other molecules that distinguish living matter are all composed of carbon compounds

© 2014 Pearson Education, I

- Vitalism was the belief in a life force outside the jurisdiction of physical and chemical laws
- It was thought that organic compounds could only be produced in living organisms
- Vitalism was disproved when chemists were able to synthesize organic compounds

© 2014 Pearson Education, Inc.

Concept 4.2: Carbon atoms can form diverse molecules by bonding to four other atoms

- Electron configuration is the key to an atom's characteristics
- Electron configuration determines the kinds and number of bonds an atom will form with other atoms

© 2014 Pearson Education, Inc.

Hydrogen (valence = 1) Oxygen (valence = 3) Carbon (valence = 4)

.

Figure 4.1

Organic Molecules and the Origin of Life on Earth

- Stanley Miller's classic experiment demonstrated the abiotic synthesis of organic compounds
- Experiments support the idea that abiotic synthesis of organic compounds, perhaps near volcanoes, could have been a stage in the origin of life

© 2014 Pearson Education, Inc.

The Formation of Bonds with Carbon

- With four valence electrons, carbon can form four covalent bonds with a variety of atoms
- This ability makes large, complex molecules possible
- In molecules with multiple carbons, each carbon bonded to four other atoms has a tetrahedral shape
- However, when two carbon atoms are joined by a double bond, the atoms joined to the carbons are in the same plane as the carbons

© 2014 Pearson Education

- Carbon atoms can partner with atoms other than hydrogen; for example:
 - Carbon dioxide: CO₂

0 = C = 0

Urea: CO(NH₂)₂

teamon Education Inc

Molecular Diversity Arising from Variation in Carbon Skeletons

- Carbon chains form the skeletons of most organic molecules
- Carbon chains vary in length and shape

Hydrocarbons can undergo reactions that release

hydrocarbon components

a large amount of energy

Isomers

- Two enantiomers of a drug may have different effects
- Usually only one isomer is biologically active
- Differing effects of enantiomers demonstrate that organisms are sensitive to even subtle variations in molecules

© 2014 Pearson Education,

Animation: L-Dopa

Concept 4.3: A few chemical groups are key to molecular function

- Distinctive properties of organic molecules depend on the carbon skeleton and on the chemical groups attached to it
- A number of characteristic groups can replace the hydrogens attached to skeletons of organic molecules

© 2014 Pearson Education, In

The Chemical Groups Most Important in the Processes of Life

- Estradiol and testosterone are both steroids with a common carbon skeleton, in the form of four fused rings
- These sex hormones differ only in the chemical groups attached to the rings of the carbon skeleton

© 2014 Pearson Education, Inc.

 The number and arrangement of functional groups give each molecule its unique properties

son Education, Inc.

- Hydroxyl group
- Carbonyl group
- Carboxyl group
- Amino group
- Sulfhydryl group
- Phosphate group
- Methyl group

O 2014 Bases of Street on Inc.

