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• Energy use by living things demonstrates the first 
law of thermodynamics 
– Energy can be transferred or transformed, but not 

created or destroyed
• The conversion of energy to thermal energy 

released as heat by living things demonstrates the 
second law of thermodynamics
– Every energy transfer or transformation increases 

the entropy (disorder) of the universe

How do the laws of thermodynamics relate to 
biological processes?
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• Metabolism is the totality of an organism’s 
chemical reactions

• It is an emergent property of life that arises from 
orderly interactions between molecules

CONCEPT 8.1: An organism’s metabolism 
transforms matter and energy

5



• In a metabolic pathway, a specific molecule is 
altered in a series of steps to produce a product

• Each step is catalyzed by a specific enzyme, a 
macromolecule that speeds up a specific reaction

Metabolic Pathways 
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Figure 8.UN01
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• Catabolic pathways release energy by breaking 
down complex molecules into simpler compounds

• Cellular respiration, the breakdown of glucose
in the presence of O2, is an example of a pathway 
of catabolism
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• Anabolic pathways consume energy to build 
complex molecules from simpler ones
– For example, the synthesis of protein from amino 

acids is an anabolic pathway
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• Catabolic pathways are described as “downhill” 
reactions, whereas anabolic pathways are “uphill” 

• Living things use energy released from the downhill 
reactions of catabolic pathways to power the uphill 
reactions of anabolic pathways

• Bioenergetics is the study of how energy flows 
through living organisms
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• Energy, the capacity to cause change, can be used 
to do work—move matter against opposing forces, 
such as gravity and friction

• Energy exists in various forms
• Living cells must transform energy from one form to 

another to do the work of life

Forms of Energy
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• Kinetic energy is energy associated with motion
• Moving objects perform work by imparting motion 

to other matter
– For example, water gushing through a dam turns 

turbines
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• Thermal energy is the kinetic energy associated 
with random movement of atoms or molecules

• Thermal energy in transfer from one object to 
another is called heat

• Light is another type of energy that can be 
harnessed to do work, such as photosynthesis
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• Potential energy is energy that matter possesses 
because of its location or structure
– For example, water behind a dam possesses energy 

because of its altitude above sea level
– Molecules possess energy due to the arrangement 

of electrons in bonds between their atoms
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• Chemical energy is potential energy available for 
release in a chemical reaction

• Complex molecules, such as glucose, are high in 
chemical energy because energy is released as 
they are broken down to simpler products
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• Energy can be converted from one form to another
– For example, chemical energy from food is used to 

perform the work of climbing up to a diving platform
– The kinetic energy of muscle movement is 

transformed into potential energy as the diver climbs 
higher above the water

– The potential energy is then transformed to kinetic 
energy as the diver falls back down to the water
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Figure 8.2

17



Animation: Energy Transformations
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• Thermodynamics is the study of energy 
transformations in a collection of matter

• An isolated system, such as the liquid in a thermos 
bottle, is unable to exchange energy or matter with 
its surroundings

The Laws of Energy Transformation 
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• In an open system, energy and matter can be 
transferred between the system and its 
surroundings

• Organisms are open systems; they absorb energy 
from light or food and release heat and metabolic 
wastes, such as CO2, to the surroundings
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• According to the first law of thermodynamics, the 
energy of the universe is constant
– Energy can be transferred and transformed, but it 

cannot be created or destroyed
• The first law is also called the principle of 

conservation of energy

The First Law of Thermodynamics
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Figure 8.3
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Figure 8.3a
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• During every energy transfer or transformation, 
some energy is converted to thermal energy and 
lost as heat, becoming unavailable to do work

• According to the second law of thermodynamics,
– Every energy transfer or transformation increases 

the entropy of the universe
– Entropy is a measure of molecular disorder, or 

randomness 

The Second Law of Thermodynamics
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Figure 8.3b
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• Living organisms increase the disorder of their 
surroundings through their metabolism
– For example, the breakdown of food releases heat 

and small molecules, such as CO2
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• Processes that increase the entropy of the universe 
can occur spontaneously

• Spontaneous processes occur without energy 
input; they can happen quickly or slowly

• Processes that decrease entropy are 
nonspontaneous; they require an input of energy
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• Cells create ordered structures from less organized 
starting materials
– For example, simple molecules are ordered into 

amino acids, which are assembled into ordered 
polypeptides

• Complex, ordered structures are also produced 
from simpler starting materials at the organismal 
level

Biological Order and Disorder
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Figure 8.4
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• The increase in order within living systems is 
balanced by the catabolic breakdown of organized 
forms of matter, releasing heat and small molecules

• At a larger scale, energy flows in to ecosystems as 
light and exits as heat
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• The evolution complex organisms from simpler 
ancestors does not violate the second law

• Entropy (disorder) may decrease in a particular 
system, such as an organism, as long as the total 
entropy of the system and surroundings increases
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• Biologists follow the energy and entropy changes 
during chemical reactions to determine whether 
they require an input of energy or occur 
spontaneously

CONCEPT 8.2: The free-energy change of a 
reaction tells us whether or not the reaction 
occurs spontaneously
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• Gibbs free energy, G, can be simplified and 
referred to as free energy

• Free energy is the portion of a system’s energy 
that can do work when temperature and pressure 
are uniform throughout the system, as in a living 
cell

Free-Energy Change, DG
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• Change in free energy during a reaction is related 
to temperature and changes in enthalpy and 
entropy

ΔG = ΔH – TΔS

– ΔG = change in free energy
– ΔH = change in enthalpy (total energy)
– ΔS = change in entropy
– T = Temperature in Kelvin (K)
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• The ΔG for a process can be used to determine 
whether it is spontaneous or not 
– ΔG is negative for all spontaneous processes
– ΔG is zero or positive for nonspontaneous processes

• Every spontaneous process decreases the 
system’s free energy

• Spontaneous processes can be harnessed by the 
cell to perform work
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• ΔG represents the difference between free energy 
of the final state and free energy of the initial state

ΔG = Gfinal state – Ginitial state

• If a reaction has negative ΔG, the system loses free 
energy and becomes more stable

Free Energy, Stability, and Equilibrium 
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• Free energy can be thought of as a measure of a 
systems stability; unstable systems (higher G) tend 
to become more stable (lower G)
– For example, a diver on a platform is less stable than 

when floating in the water
– A drop of concentrated dye is less stable than when 

it is dispersed randomly through a liquid
– A glucose molecule is less stable than the simpler 

molecules into which it can be split
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Figure 8.5
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• Equilibrium, the point at which forward and reverse 
reactions occur at the same rate, describes a state 
of maximum stability

• Systems never spontaneously move away from 
equilibrium

• A process is spontaneous and can perform work 
only when it is moving toward equilibrium
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• The concept of free energy can be applied to the 
chemistry of life’s processes

Free Energy and Metabolism
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• Chemical reactions can be classified based on their 
free-energy changes
– An exergonic reaction (“energy outward”) proceeds 

with a net release of free energy to the surroundings 
– An endergonic reaction (“energy inward”) absorbs 

free energy from the surroundings

Exergonic and Endergonic Reactions in 
Metabolism
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Figure 8.6
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Animation: Exergonic and Endergonic 
Reactions
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• In exergonic reactions, the products store less free 
energy than the reactants

• Because ΔG is negative, exergonic reactions occur 
spontaneously

• Recall that the term spontaneous means that a 
reaction is energetically favorable, not that it will 
occur rapidly
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Figure 8.6a
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• The magnitude of ΔG determines the maximum 
amount of work an exergonic reaction can perform
– For example, for each mole of glucose broken down 

during cellular respiration, 686 kcal of energy is 
available for work

– The chemical products of respiration store 686 kcal 
less free energy per mole than the reactants
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• Breaking bonds during a chemical reaction does 
not release energy; it requires energy

• If the products are of lower free energy than the 
reactants, potential energy is released when new 
bonds are formed after the original bonds break
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• In endergonic reactions, the products store more 
free energy than the reactants

• Because ΔG is positive, endergonic reactions are 
nonspontaneous
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Figure 8.6b
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• The magnitude of ΔG determines the quantity of 
energy required to drive an endergonic reaction
– For example, to produce glucose and O2 from CO2

and H2O requires an input of 686 kcal/mol
– The products of photosynthesis store 686 kcal more 

free energy per mole than the reactants
– This reaction is powered by converting light energy 

to chemical energy 

50



• Reactions in a closed system, such as an isolated 
hydroelectric system, eventually reach equilibrium 
and can then do no work

Equilibrium and Metabolism
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Figure 8.7
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• The chemical reactions of metabolism are 
reversible, but never reach equilibrium in a living 
cell

• This is one of the defining features of life
• Like an open hydroelectric system, cells allow 

materials to flow in and out
• The flow of materials prevents metabolic 

equilibrium, enabling cells to continue doing work
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Figure 8.8a
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• Like a multistep open hydroelectric system, a 
catabolic pathway in a cell releases free energy in 
a series of reactions 
– For example, in cellular respiration reactions are 

“pulled” in one direction because the products of 
each reaction are the reactants in the next step 

– A steady inflow of glucose and release of waste 
products ensures that equilibrium is never reached 

55



Figure 8.8b
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• A cell does three main kinds of work:
– Chemical work—pushing endergonic reactions
– Transport work—pumping substances across 

membranes against the direction of spontaneous 
movement

– Mechanical work—such as beating cilia or 
contracting muscle cells

CONCEPT 8.3: ATP powers cellular work by 
coupling exergonic reactions to endergonic 
reactions 
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• Cells manage energy resources to do work through 
energy coupling, the use of an exergonic process 
to drive an endergonic one

• Most energy coupling in cells is mediated by ATP
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Animation: Energy Coupling
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• ATP (adenosine triphosphate) is composed of 
ribose (a sugar), adenine (a nitrogenous base), and 
three phosphate groups

• In addition to energy coupling, ATP functions as 
one of the nucleoside triphosphates used to make 
RNA

The Structure and Hydrolysis of ATP
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Figure 8.9a
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Animation: The Structure of ATP

62



Animation: Space Filling Model of ATP
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Animation: Stick Model of ATP
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• Energy is released from ATP when the terminal 
phosphate bond is broken by hydrolysis, the 
addition of a water molecule

• The energy does not come directly from the 
phosphate bonds, but from the chemical change to 
a state of lower free energy in the products
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Figure 8.9b
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• ATP releases more energy with the loss of a 
phosphate than most other molecules could deliver

• Repulsion between the negative charges of the 
three phosphate groups creates a lot of potential 
energy

• The triphosphate tail is the chemical equivalent of a 
compressed spring
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• Cellular work (mechanical, transport, and chemical) 
is powered by ATP hydrolysis

• In the cell, energy from the exergonic hydrolysis of 
ATP is used to drive endergonic reactions

• Overall, the coupled reactions are exergonic

How ATP Provides Energy That Performs Work 
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• Phosphorylation, transfer of a phosphate group 
from ATP to another molecule, is typically used to 
power endergonic reactions

• The recipient molecule, a phosphorylated 
intermediate, is more reactive (less stable, with 
more free energy) that the original molecule
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Figure 8.10
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• Transport and mechanical work in the cell are also 
nearly always powered by ATP hydrolysis

• ATP hydrolysis causes a change in protein shape 
and binding ability
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Figure 8.11
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• ATP is regenerated by addition of a phosphate 
group to adenosine diphosphate (ADP)

• Free energy needed to phosphorylate ADP comes 
from exergonic breakdown reactions (catabolism)

• The shuttling of inorganic phosphate and energy is 
called the ATP cycle; it couples energy-yielding 
processes to energy-consuming ones

The Regeneration of ATP
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Figure 8.12
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Animation: Metabolism Overview
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• Spontaneous reactions do not need added energy, 
but they can be slow enough to be imperceptible
– For example, the hydrolysis of sucrose to glucose 

and fructose is spontaneous 
– At room temperature, a solution of sucrose in sterile 

water would sit for years without appreciable 
hydrolysis

CONCEPT 8.4: Enzymes speed up metabolic 
reactions by lowering energy barriers 
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• A catalyst is a chemical agent that speeds up a 
reaction without being consumed by the reaction

• An enzyme is a macromolecule (typically protein) 
that acts as a catalyst to speed up a specific 
reaction
– For example, adding the enzyme sucrase to a 

sucrose solution at room temperature will catalyze 
the complete hydrolysis of sucrose within seconds
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Figure 8.UN02
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• Every chemical reaction between molecules 
involves bond breaking and bond forming

• A molecule must be contorted into a highly unstable 
state before bonds can break to start the reaction

• To reach this state, the molecule must absorb 
energy from its surroundings

The Activation Energy Barrier
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• The initial energy needed to break the bonds of the 
reactants is called the activation energy (EA) 

• Heat in the form of thermal energy absorbed from 
the surroundings often supplies activation energy

• Molecules become unstable when enough energy 
is absorbed to break bonds; this is the transition 
state 
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• As atoms settle into new, more stable bonds, 
energy is released to the surroundings

• In an exergonic reaction, the formation of new 
bonds releases more energy than was invested in 
breaking the old bonds
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Figure 8.13
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• The activation energy provides a barrier that 
determines the rate of spontaneous reactions

• For some reactions, EA is low enough that thermal 
energy at room temperature is sufficient to 
overcome the activation barrier

• Most reactions have high EA, and need additional 
energy (usually heat) to reach the transition state
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• Adding heat is not a useful way to speed reactions 
in cells because it can cause proteins to denature

• Heat is also impractical because it would speed up 
all reactions, not just those that are needed

• Instead, organisms carry out catalysis, the process 
by which a catalyst selectively speeds up a reaction 
without itself being consumed

How Enzymes Speed Up Reactions

84



• An enzyme catalyzes a reaction by lowering the EA
barrier enough for the reaction to occur at 
moderate temperatures

• An enzyme cannot change ΔG; it only speeds up a 
reaction that would eventually occur anyway
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Figure 8.14
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Animation: How Enzymes Work
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• The reactant that an enzyme acts on is called the 
enzyme’s substrate 

• The enzyme binds to its substrate, forming an 
enzyme-substrate complex

• While bound, the catalytic activity of the enzyme 
converts substrate to product

Substrate Specificity of Enzymes
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• Most enzyme names end in -ase
– For example, the enzyme sucrase catalyzes the 

hydrolysis of sucrose into glucose and fructose 
• Each enzyme catalyzes a specific reaction and can 

recognize its specific substrate among even closely 
related compounds
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• The active site is the region on the enzyme, often 
a pocket or groove, that binds to the substrate

• The complementary fit between the shape of the 
active site and the shape of the substrate is 
responsible for enzyme specificity
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• When the substrate enters the active site, the 
enzyme changes shape slightly, tightening around 
the substrate like a handshake

• This induced fit results from interactions between 
chemical groups on the substrate and the active 
site

• It brings the chemical groups of the active site into 
positions that enhance catalysis of the reaction
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Figure 8.15
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Video: Closure of Hexokinase Via Induced Fit
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• The substrate is typically held in the enzyme’s 
active site by weak bonds, such as hydrogen bonds 

• The conversion of substrate to product happens 
rapidly, and product is released from the active site

• Because enzymes emerge from reactions in their 
original form, small amounts can have huge 
metabolic impacts 

Catalysis in the Enzyme’s Active Site
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Figure 8.16-1
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Figure 8.16-2
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Figure 8.16-3
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Figure 8.16-4
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Animation: Enzymes: Steps in a Reaction
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• Enzymes use a variety of mechanisms to lower EA
– Substrates may be oriented to facilitate the reaction
– Substrates may be stretched to make the bonds 

easier to break
– The active site may provide a microenvironment that 

favors the reaction
– Amino acids in the active site may participate in the 

reaction
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• The rate of an enzyme-catalyzed reaction can be 
sped up by increasing substrate concentration

• When all enzyme molecules have their active sites 
engaged, the enzyme is saturated

• If the enzyme is saturated, the reaction rate can 
only be sped up by adding more enzyme
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• Enzyme activity can be affected by general 
environmental factors, such as temperature and pH

• It can also be affected by chemicals that specifically 
influence the enzyme

Effects of Local Conditions on Enzyme Activity
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• Each enzyme has an optimal temperature at which 
it catalyzes its reaction at the maximum possible 
rate 

• Up to this point, the reaction rate increases with 
increasing temperature; beyond this point the rate 
of reaction begins to drop

• Enzymes begin to denature at temperatures 
beyond their optimum

Effects of Temperature and pH
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• The optimal temperature of an enzyme is 
dependent on the environment in which it typically 
functions
– For example, the optimal temperature for human 

enzymes is about 37°C, whereas the optimal 
temperature for thermophilic bacteria is about 75°C
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Figure 8.17

105



Figure 8.17a
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• Each enzyme has an optimal pH that is dependent 
on the environment in which it is typically active
– For example, the optimal pH for pepsin—a human 

stomach enzyme—is 2, whereas the optimal pH for 
trypsin—an intestinal enzyme—is 8
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Figure 8.17b
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• Cofactors are nonprotein helpers that bind to the 
enzyme permanently, or reversibly with the 
substrate

• Inorganic cofactors include metal atoms such as 
zinc, iron, and copper in ionic form

• Organic cofactors are called coenzymes
• Most vitamins either act as coenzymes or provide 

the raw materials needed to make them

Cofactors
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• Certain chemicals selectively inhibit the action of 
specific enzymes

• If an inhibitor forms covalent bonds with the 
enzyme, then the inhibition is usually irreversible

• Many inhibitors bind to the enzyme by weak 
interactions, resulting in reversible inhibition 

Enzyme Inhibitors
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• Competitive inhibitors closely resemble the 
substrate, and can bind to the enzyme’s active site 

• Enzyme productivity is reduced because the 
inhibitor blocks the substrate from entering the 
active site

• Increasing substrate concentration can overcome 
this type of inhibition
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Figure 8.18a
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Figure 8.18b
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Animation: Enzymes: Competitive Inhibition
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• Noncompetitive inhibitors bind to another part of 
the enzyme, away from the active site 

• Binding of the inhibitor causes the enzyme to 
change shape, making the active site less effective 
at catalyzing the reaction
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Figure 8.18c
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Animation: Enzymes: Noncompetitive Inhibition
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• Toxins and poisons are often irreversible enzyme 
inhibitors
– For example, sarin gas was used in a chemical 

attack in Syria in 2017, killing and injuring hundreds
– Sarin binds covalently to the active site of 

acetylcholinesterase, an enzyme important in the 
nervous system

• Other examples include pesticides and antibiotics
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• Enzymes are proteins encoded by genes
• Changes in genes (mutations) lead to changes

in the amino acid composition of the enzyme
• Altered amino acids, particularly at the active site, 

can result in novel enzyme activity or altered 
substrate specificity

The Evolution of Enzymes
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• If a mutation results in a new enzyme function that 
is beneficial to the organism, natural selection will 
favor the mutated allele
– For example, repeated mutation and selection on the 
β-galactosidase enzyme in E. coli resulted in a 
change of sugar substrate under lab conditions
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Figure 8.19
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• Chemical chaos would result if a cell’s metabolic 
pathways were operating simultaneously

• Cells can regulate metabolic pathways by switching 
on or off the genes that encode specific enzymes, 
or by regulating the activity of existing enzymes

CONCEPT 8.5: Regulation of enzyme activity 
helps control metabolism
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• Allosteric regulation occurs when a regulatory 
molecule binds to a protein at one site and affects 
the protein’s function at another site

• This type of regulation may either inhibit or 
stimulate enzyme activity

Allosteric Regulation of Enzymes
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• Most allosterically regulated enzymes are made 
from polypeptide subunits, each with its own active 
site

• The complex oscillates between two shapes, one 
catalytically active and the other inactive

Allosteric Activation and Inhibition
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• An activating or inhibiting molecule may bind to a 
regulatory site, often located where the subunits 
join 

• The binding of an activator stabilizes the shape that 
has functional active sites, whereas the binding of 
an inhibitor stabilizes the inactive form of the 
enzyme
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Figure 8.20a
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• In cooperativity, substrate binding to one active 
site triggers a shape change in the enzyme that 
stabilizes the active form for all other sites

• This mechanism amplifies the response by priming 
the enzyme to act on additional substrate 
molecules more readily
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Figure 8.20b
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• In feedback inhibition, the end product of a 
metabolic pathway shuts down the pathway

• Feedback inhibition prevents a cell from wasting 
chemical resources by synthesizing more product 
than is needed

Feedback Inhibition
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Figure 8.21
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• Compartmentalization of the cell helps to bring 
order to metabolic pathways

• In some cases, the enzymes for several steps in a 
metabolic pathway form a multienzyme complex

• Some enzymes have fixed locations and act as 
structural components of particular membranes

Localization of Enzymes Within the Cell
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• In eukaryotic cells, some enzymes reside within 
specific organelles 
– For example, enzymes for the second and third 

stages of cellular respiration are located within 
mitochondria
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Figure 8.22
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Figure 8.UN03a
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Figure 8.UN03b
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Figure 8.UN04
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Figure 8.UN05
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