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• Photosynthesis is the process that converts solar 
energy into chemical energy within chloroplasts

• Photosynthesis nourishes almost the entire living 
world directly or indirectly

CONCEPT 10.1 Photosynthesis feeds the 
biosphere
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• Autotrophs are “self-feeders” that sustain 
themselves without eating anything derived from 
other organisms

• Autotrophs are the producers of the biosphere; they 
produce organic molecules from CO2 and other 
inorganic molecules

The Process That Feeds the Biosphere
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• Almost all plants are photoautotrophs, that is, they 
use the energy of sunlight to make organic 
molecules

• Photosynthesis also occurs in algae, certain other 
protists, and some prokaryotes
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Figure 10.2
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• Heterotrophs obtain organic material from other 
organisms; they are the consumers of the 
biosphere

• Some consume other living things; others, called 
decomposers, eat dead organic material or feces
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• Fossil fuels were formed from the remains of 
organisms that died hundreds of millions of years 
ago, representing ancient stores of the sun’s 
energy

• Almost all heterotrophs depend on 
photoautotrophs, either directly or indirectly, for 
food and O2
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• Plants and other photosynthetic organisms contain 
organelles called chloroplasts

• Chloroplasts are structurally similar to and likely 
evolved from photosynthetic bacteria 

• The structural organization of these organelles 
allows for the chemical reactions of photosynthesis

CONCEPT 10.2: Photosynthesis converts light 
energy to the chemical energy of food
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• Most photosynthesis in plants occurs in the leaves
• Chloroplasts are found mainly in cells of the 

mesophyll, the interior tissue of the leaf
• CO2 enters and O2 exits the leaf through 

microscopic pores called stomata
• Veins transport water from the roots and export 

sugar to nonphotosynthetic parts of the plant

Chloroplasts: The Sites of Photosynthesis 
in Plants
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• A chloroplast has an envelope of two membranes 
surrounding a dense fluid called the stroma

• Thylakoids are connected sacs in the chloroplast 
that compose a third membrane system

• Thylakoids may be stacked in columns called grana
• Chlorophyll, the pigment that gives leaves their 

green color, resides in the thylakoid membranes
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Figure 10.3
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Video: Chloroplasts in Motion
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• Photosynthesis is a complex series of reactions 
that can be summarized as the following equation:
6 CO2 + 12 H2O + Light energy → C6H12O6 + 6 O2 + 6 
H2O 

• The overall chemical change during photosynthesis 
is the reverse of cellular respiration

Tracking Atoms Through Photosynthesis: 
Scientific Inquiry
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• Chloroplasts split H2O into hydrogen and oxygen, 
incorporating the electrons of hydrogen into sugar 
molecules and releasing O2 as a by-product

The Splitting of Water
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Figure 10.4
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• All photosynthetic organisms require a hydrogen 
source, but the source varies among organisms
– For example, sulfur bacteria use H2S instead of 

water, forming yellow globules of sulfur as a waste 
product
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• Photosynthesis reverses the direction of electron 
flow compared to respiration

• Photosynthesis is a redox process in which H2O is 
oxidized and CO2 is reduced

• Photosynthesis is an endergonic process; the 
energy boost is provided by light

Photosynthesis as a Redox Process
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Figure 10.UN01
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• Photosynthesis consists of the light reactions
(the photo part) and Calvin cycle (the synthesis 
part)

• The light reactions (in the thylakoids)
– Split H2O, providing electrons and protons (H+)
– Release O2 as a by-product
– Reduce the electron acceptor NADP+ to NADPH
– Generate ATP from ADP by photophosphorylation

The Two Stages of Photosynthesis: A Preview
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• The Calvin cycle (in the stroma) makes sugar from 
CO2, using the ATP and NADPH generated during 
the light reactions

• The Calvin cycle begins with carbon fixation, 
incorporating CO2 into organic molecules

• It then reduces fixed carbon to carbohydrate by 
transferring electrons from NADPH
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• Chloroplasts use light energy to make sugar by 
coordinating the two stages of photosynthesis 

• The light reactions occur in the thylakoids and 
release NADPH and ATP to the stroma for use in 
the Calvin cycle
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Figure 10.5
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Animation: Photosynthesis
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• Chloroplasts are solar-powered chemical factories
• Their thylakoids transform light energy into the 

chemical energy of ATP and NADPH

CONCEPT 10.3: The light reactions convert 
solar energy to the chemical energy of ATP and 
NADPH
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• Light is electromagnetic energy, also called 
electromagnetic radiation

• Electromagnetic energy travels in rhythmic waves
• Wavelength is a measure of the distance between 

crests of electromagnetic waves
• It can range from less than a nanometer (gamma 

rays) to more than a kilometer (radio waves)

The Nature of Sunlight

27



• The electromagnetic spectrum is the entire range 
of electromagnetic energy, or radiation 

• Visible light (wavelengths 380 nm to 740 nm) 
drives photosynthesis and produces the colors 
seen by the human eye
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Figure 10.6
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• Light also behaves as though it consists of discrete 
particles, called photons

• Each photon has a fixed quantity of energy which is 
inversely related to the wavelength of light; shorter 
wavelengths have more energy per photon of light
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• Pigments are substances that absorb visible light
• Different pigments absorb different wavelengths, 

and the wavelengths that are absorbed disappear
• Wavelengths that are not absorbed are reflected or 

transmitted
– For example, most leaves appear green because 

chlorophyll absorbs violet-blue and red light while 
reflecting and transmitting green light

Photosynthetic Pigments: The Light Receptors
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Figure 10.7

32



Animation: Light Energy and Pigments
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• A spectrophotometer measures a pigment’s ability 
to absorb various wavelengths 

• It sends light through pigments and measures the 
fraction of light transmitted at each wavelength

• An absorption spectrum is a graph plotting a 
pigment’s light absorption versus wavelength
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Figure 10.8

35



• Three types of pigments in chloroplasts include: 
– Chlorophyll a, the key light-capturing pigment that 

participates directly in light reactions
– Chlorophyll b, an accessory pigment
– Carotenoids, a separate group of accessory 

pigments
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• The absorption spectrum of chlorophyll a indicates 
that violet-blue and red light will work best for 
photosynthesis, while green is the least effective

• The action spectrum for photosynthesis, a profile 
of the relative effectiveness of different 
wavelengths, confirms the effectiveness of violet-
blue and red light 
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• The action spectrum of photosynthesis was first 
demonstrated in 1883 by Theodor W. Engelmann

• He exposed different segments of a filamentous 
alga to different wavelengths of light and used the 
growth of aerobic bacteria as a measure of O2
production
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Figure 10.9
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• The action spectrum for photosynthesis is broader 
than the absorption spectrum of chlorophyll 

• Accessory pigments, such as chlorophyll b, 
broaden the spectrum used for photosynthesis

• The difference in the absorption spectrum between 
chlorophyll a and b is due to a slight structural 
difference between the pigment molecules 
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Figure 10.10
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Animation: Space-Filling Model of Chlorophyll
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• In the last decade, two other forms of chlorophyll 
were discovered—chlorophyll d and chlorophyll f—
that absorb higher wavelengths of light

• The cyanobacterium, Chroococcidiopsis thermalis, 
uses chlorophyll f in place of chlorophyll a in 
shaded conditions
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• Other accessory pigments called carotenoids, are 
yellow or orange because they absorb violet and 
blue-green light

• Carotenoids broaden the spectrum for 
photosynthesis 

• Some are also photoprotective, that is, they absorb 
excessive light that would otherwise damage 
chlorophyll or react with oxygen

44



• When a pigment molecule absorbs light, one of its 
electrons goes from a ground state to an excited 
state, which is unstable

• In isolation, excited electrons fall back to the 
ground state, releasing excess energy as heat or 
light, an afterglow called fluorescence

Excitation of Chlorophyll by Light
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Figure 10.11
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• A photosystem consists of a reaction-center 
complex surrounded by light-harvesting complexes

• The reaction-center complex is an association of 
proteins holding a special pair of chlorophyll a
molecules and a primary electron acceptor

A Photosystem: A Reaction-Center Complex 
Associated with Light-Harvesting Complexes
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• The light-harvesting complex consists of various 
pigment molecules bound to proteins 

• Light-harvesting complexes transfer the energy of 
photons to the chlorophyll a molecules in the 
reaction-center complex

• These chlorophyll a molecules are special because 
they can transfer an excited electron to a different 
molecule
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• A primary electron acceptor in the reaction center 
accepts excited electrons and is reduced as a 
result

• Solar-powered transfer of an electron from a 
chlorophyll a molecule to the primary electron 
acceptor is the first step of the light reactions
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Figure 10.12
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• There are two types of photosystems in the 
thylakoid membrane, numbered in order of their 
discovery
– Photosystem II (PS II) is called P680 because its 

reaction-center chlorophyll a is best at absorbing 
light with a wavelength of 680 nm

– Photosystem I (PS I) is called P700 because its 
reaction-center chlorophyll a is best at absorbing 
light with a wavelength of 700 nm
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• During the light reactions, there are two possible 
routes for electron flow: cyclic and linear

• Linear electron flow, the primary pathway, 
involves both photosystems and produces ATP and 
NADPH using light energy

Linear Electron Flow
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• There are eight steps in linear electron flow:
1. A photon hits a pigment in a light-harvesting 

complex of PS II, and its energy is passed among 
pigment molecules until it excites P680

2. An excited electron from P680 is transferred to the 
primary electron acceptor; we refer to the oxidized 
form as P680+
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3. An enzyme catalyzes the split of H2O into two 
electrons, two hydrogen ions (H+) and an oxygen 
atom
§ The electrons are transferred to the P680+ pair, 

reducing it back to P680
§ The H+ are released into the thylakoid space
§ The oxygen atom combines with another oxygen atom 

generated by the splitting of a different H2O and forms 
O2
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4. Electrons are passed in a series of redox reactions 
from the primary electron acceptor of PS II down 
an electron transport chain to PS I
§ The electron transport chain includes the electron 

carrier plastoquinone (Pq), a cytochrome complex, 
and a protein called plastocyanin (Pc)

§ Energy released by electron transfer is used to pump 
H+ into the thylakoid space, creating a proton gradient 
across the thylakoid membrane
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5. Potential energy stored in the proton gradient 
drives production of ATP by chemiosmosis

6. In PS I (like PS II), transferred light energy excites 
P700, which loses an electron to the primary 
electron acceptor
§ P700+ (P700 that is missing an electron) accepts an 

electron passed down from PS II via the electron 
transport chain
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7. Electrons are passed from the primary electron 
acceptor of PS I down a second electron transport 
chain to the protein ferredoxin (Fd)
§ There is no proton gradient or ATP produced by this 

electron transport chain
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8. The enzyme NADP+ reductase catalyzes the 
transfer of electrons from Fd to NADP+

§ Two electrons are needed to reduce NADP+ to 
NADPH

§ The electrons of NADPH are at a higher energy level 
than they were in H2O, so are more readily available 
for the reactions of the Calvin cycle

§ The formation of NADPH also removes an H+ from the 
stroma
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Figure 10.UN02
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Figure 10.13

60



• Light reactions use solar power to generate ATP 
and NADPH, providing the chemical energy and 
reducing power needed by the Calvin cycle to 
make sugar

• The energy changes of electrons during linear flow 
through the light reactions can be shown in a 
mechanical analogy
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Figure 10.14
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• In cyclic electron flow, photoexcited electrons 
cycle back from Fd to the cytochrome complex 
instead of being transferred to NADP+

• Electrons are passed to a P700 chlorophyll in the 
PS I reaction center via the plastocyanin molecule 
(Pc)

• Cyclic electron flow uses only photosystem I
• It produces ATP, but no NADPH or oxygen results 

from this process

Cyclic Electron Flow
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Figure 10.15
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• Several groups of photosynthetic bacteria have 
only a single photosystem related to either PS II or
PS I

• For these organisms, cyclic electron flow is the only 
means of generating ATP during photosynthesis

• Photosynthesis may have first evolved in the 
ancestors of these bacteria in a form similar to 
cyclic electron flow
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• Cyclic electron flow is probably, in part an 
“evolutionary leftover” in organisms with both 
photosystems 

• Cyclic electron flow may have some 
photoprotective capability; plants that do not have it 
grow well in low light, but cannot grow well in 
intense light 
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• Chloroplasts and mitochondria both generate ATP 
by chemiosmosis 
– Electron transport chains pump protons (H+) across 

a membrane as electrons are passed through 
carriers with progressively higher electron affinity

– ATP synthase couples the diffusion of H+ down their 
gradient to the phosphorylation of ADP to ATP 

A Comparison of Chemiosmosis in 
Chloroplasts and Mitochondria
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• Some of the electron carriers, including iron-
containing proteins called cytochromes, are very 
similar in mitochondria and chloroplasts

• The ATP synthase complexes are also very similar
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• Photophosphorylation differs from oxidative 
phosphorylation in a few key ways
– In chloroplasts, high energy electrons drop down the 

transport chain from water, while in mitochondria, 
they are extracted from organic molecules

– Mitochondria transfer chemical energy from food to 
ATP; chloroplasts transform light energy into the 
chemical energy of ATP
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• Although the spatial organization of chemiosmosis 
differs slightly, there are similarities
– In mitochondria, protons are pumped to the 

intermembrane space and drive ATP synthesis as 
they diffuse back into the mitochondrial matrix

– In chloroplasts, protons are pumped into the 
thylakoid space and drive ATP synthesis on the 
stroma side of the membrane as they diffuse back 
into the stroma
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Figure 10.16
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• Both ATP and NADPH are produced on the stroma
side of the thylakoid membrane, making them 
available for sugar synthesis in the Calvin cycle
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Figure 10.UN03
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Figure 10.17
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Animation: The Light Reactions
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Animation: The Light Reactions
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• The Calvin cycle, like the citric acid cycle, 
regenerates its starting material after molecules 
enter and leave the cycle

• The Calvin cycle is anabolic; it builds sugar from 
smaller molecules by using ATP and the reducing 
power of electrons carried by NADPH

CONCEPT 10.4: The Calvin cycle uses the 
chemical energy of ATP and NADPH to reduce 
CO2 to sugar
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• Carbon enters the cycle as CO2 and leaves as a 
sugar named glyceraldehyde 3-phospate (G3P)

• For net synthesis of one G3P, the cycle must take 
place three times, fixing three molecules of CO2, 
one for each turn of the cycle

• The Calvin cycle has three phases: carbon fixation, 
reduction, and regeneration of the CO2 acceptor
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Phase 1: Carbon fixation
• The binding of CO2 to a five-carbon sugar named 

ribulose bisphosphate (RuBP) is catalyzed by 
RuBP carboxylase-oxygenase, or rubisco

• The six-carbon intermediate molecule is 
immediately split into two molecules of 3-
phosphoglycerate (for each CO2 fixed)
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Phase 2: Reduction
• Each molecule of 3-phosphoglycerate is altered 

through phosphorylation by six ATP and reduction 
by six NADPH to ultimately produce a G3P sugar

• For every three CO2 molecules that enter the cycle, 
six molecules of G3P are formed

• Only one of these can be counted as a net gain of 
carbohydrate
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Phase 3: Regeneration of the CO2 acceptor 
(RuBP)
• The remaining five molecules of G3P are 

rearranged in a complex series of reactions yielding 
three molecules of RuBP

• Three additional molecules of ATP are used to 
facilitate the regeneration of RuBP
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Figure 10.UN04
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Figure 10.18
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Animation: The Calvin Cycle
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Animation: The Calvin Cycle
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• For the net synthesis of one G3P molecule, the 
Calvin cycle consumes nine molecules of ATP and 
six molecules of NADPH

• The light reactions regenerate the ATP and NADPH
• The G3P is the starting molecule for metabolic 

pathways that synthesize other organic molecules, 
including glucose, sucrose, and other 
carbohydrates
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• Dehydration is a major challenge of terrestrial life 
for plants, particularly in arid climates

• Plants have metabolic adaptations to help conserve 
water; but these adaptations often involve trade-
offs

CONCEPT 10.5: Alternative mechanisms of 
carbon fixation have evolved in hot, arid 
climates
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• One important trade-off is the balance between 
photosynthesis and water conservation
– On hot, dry days, plants close stomata, which 

conserves H2O but also limits photosynthesis
– The closing of stomata reduces access to CO2 and 

causes O2 to build up
– These conditions favor an apparently wasteful 

process called photorespiration
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• Most plants are C3plants, in which the initial 
fixation of CO2, via rubisco, forms a three-carbon 
compound (3-phosphoglycerate)

• In photorespiration, rubisco binds with O2 instead 
of CO2, producing a two-carbon compound

Photorespiration: An Evolutionary Relic?
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• Photorespiration is costly because it consumes O2
and organic fuel without producing any ATP or 
sugar

• It is thought to be an evolutionary relic because 
rubisco first evolved at a time when the atmosphere 
had far less O2 and more CO2

• Photorespiration may provide some protection from 
the damaging products of the light reactions that 
build up when the Calvin cycle slows due to low 
CO2
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• In many plants, photorespiration drains away as 
much as 50% of the carbon fixed by the Calvin 
cycle

• In some plant species, alternate modes of carbon 
fixation have evolved to minimize photorespiration 
and optimize the Calvin cycle
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• C4 plants minimize the cost of photorespiration by 
incorporating CO2 into a four-carbon compound as 
the first product of the Calvin cycle

• C4 has evolved several times and is used by 
several thousand species in at least 19 different 
families

• Important agricultural examples include sugarcane 
and corn

C4 Plants
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• In hot, dry weather, C4 plants partially close their 
stomata, conserving water but reducing CO2

• Photosynthesis begins in mesophyll cells, but is 
completed in bundle-sheath cells, cells arranged 
in tightly packed sheaths around the leaf veins
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• Sugar production in C4 plants occurs in a three-step 
process
1. The production of the four-carbon precursors is 

catalyzed by the enzyme PEP carboxylase in the 
mesophyll cells 
§ PEP carboxylase has a higher affinity for CO2 than 

rubisco does; it can fix CO2 even when CO2
concentrations are low
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2. The four-carbon compounds are exported to 
bundle-sheath cells through plasmodesmata

3. Within the bundle-sheath cells, CO2 is released 
from the four-carbon compound and then used in 
the Calvin cycle
§ Pyruvate is transported to the mesophyll cells where 

one ATP is used to convert it back to PEP
§ This ATP is generated using cyclic electron flow
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Figure 10.19
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• CO2 levels have drastically increased since the 
Industrial Revolution began in the 1800s, and 
continue to rise today due to human activities 

• Increasing CO2 and temperature may affect C3 and 
C4 plants differently, perhaps changing the relative 
abundance of these species

• The effects of such changes are unpredictable and 
a cause for concern
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• Suitable agricultural land is decreasing due to the 
effects of climate change, while the world 
population and demand for food continue to 
increase

• C4 photosynthesis uses less water and resources 
than C3 photosynthesis

• Scientists have genetically modified rice, a C3 plant, 
to carry out C4 photosynthesis for an estimated 30–
50% increase in yield for given water and 
resources
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• Some plants, including succulents, conserve water 
by using crassulacean acid metabolism (CAM) to
fix carbon

• CAM plants open their stomata at night, and 
incorporate CO2 into organic acids that are stored 
in the vacuoles

• Stomata close during the day, and CO2 is released 
from organic acids and used in the Calvin cycle

CAM Plants
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• The CAM pathway is similar to the C4 pathway in 
that they both incorporate CO2 into organic 
intermediates before it enters the Calvin cycle

• The C4 pathway structurally separates the initial 
steps of carbon fixation from the Calvin cycle

• In the CAM pathway, these steps occur in the same 
cell, but are separated in time
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Figure 10.20
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Animation: Photosynthesis in Dry Climates
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• The energy entering chloroplasts as sunlight gets 
stored as chemical energy in organic compounds

• Sugar made in the chloroplasts supplies chemical 
energy and carbon skeletons to synthesize the 
organic molecules of cells

• Plants store excess sugar in the form of starch in 
chloroplasts and other structures such as roots, 
tubers, seeds, and fruits

CONCEPT 10.6: Photosynthesis is essential for 
life on Earth: a review
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Figure 10.21
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Figure 10.22
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Figure 10.UN05a

106



Figure 10.UN05b
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Figure 10.UN06
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Figure 10.UN07
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Figure 10.UN08
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Figure 10.UN09
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