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Life Is Work 

!  Living cells require energy from outside sources 

!  Some animals, such as the giraffe, obtain energy 
by eating plants, and some animals feed on other 
organisms that eat plants 
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Figure 9.1 
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!  Energy flows into an ecosystem as sunlight and 
leaves as heat 

!  Photosynthesis generates O2 and organic 
molecules, which are used in cellular respiration 

!  Cells use chemical energy stored in organic 
molecules to generate ATP, which powers work 
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Figure 9.2 
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BioFlix: The Carbon Cycle 
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Concept 9.1: Catabolic pathways yield energy 
by oxidizing organic fuels 
!  Catabolic pathways release stored energy by 

breaking down complex molecules  

!  Electron transfer plays a major role in these 
pathways 

!  These processes are central to cellular respiration 
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Catabolic Pathways and Production of ATP 

!  The breakdown of organic molecules is exergonic 

!  Fermentation is a partial degradation of sugars 
that occurs without O2 

!  Aerobic respiration consumes organic molecules 
and O2 and yields ATP 

!  Anaerobic respiration is similar to aerobic 
respiration but consumes compounds other 
than O2 

8

© 2014 Pearson Education, Inc. 

  

!  Cellular respiration includes both aerobic and 
anaerobic respiration but is often used to refer to 
aerobic respiration 

!  Although carbohydrates, fats, and proteins are all 
consumed as fuel, it is helpful to trace cellular 
respiration with the sugar glucose 

   C6H12O6 + 6 O2 → 6 CO2 + 6 H2O + Energy (ATP + heat) 
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Redox Reactions: Oxidation and Reduction 

!  The transfer of electrons during chemical reactions 
releases energy stored in organic molecules 

!  This released energy is ultimately used to 
synthesize ATP 
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The Principle of Redox 

!  Chemical reactions that transfer electrons between 
reactants are called oxidation-reduction reactions, 
or redox reactions 

!  In oxidation, a substance loses electrons, 
or is oxidized 

!  In reduction, a substance gains electrons, or is 
reduced (the amount of positive charge is 
reduced) 
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Figure 9.UN01 
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Figure 9.UN02 
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!  The electron donor is called the reducing agent 

!  The electron receptor is called the oxidizing agent 

!  Some redox reactions do not transfer electrons but 
change the electron sharing in covalent bonds 

!  An example is the reaction between methane 
and O2 
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Figure 9.3 
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Oxidation of Organic Fuel Molecules During 
Cellular Respiration 
!  During cellular respiration, the fuel (such as 

glucose) is oxidized, and O2 is reduced 
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Figure 9.UN03 

becomes oxidized 

becomes reduced 

17

© 2014 Pearson Education, Inc. 

Stepwise Energy Harvest via NAD+ and the 
Electron Transport Chain 
!  In cellular respiration, glucose and other organic 

molecules are broken down in a series of steps 

!  Electrons from organic compounds are usually first 
transferred to NAD+, a coenzyme 

!  As an electron acceptor, NAD+ functions as an 
oxidizing agent during cellular respiration 

!  Each NADH (the reduced form of NAD+) 
represents stored energy that is tapped to 
synthesize ATP 
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Figure 9.4 
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Figure 9.4a 
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Figure 9.4b 
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Figure 9.UN04 

Dehydrogenase 
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!  NADH passes the electrons to the electron 
transport chain 

!  Unlike an uncontrolled reaction, the electron 
transport chain passes electrons in a series of 
steps instead of one explosive reaction 

!  O2 pulls electrons down the chain in an energy-
yielding tumble 

!  The energy yielded is used to regenerate ATP 
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Figure 9.5 
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The Stages of Cellular Respiration: A Preview 

!  Harvesting of energy from glucose has three 
stages 

!  Glycolysis (breaks down glucose into two 
molecules of pyruvate) 

!  The citric acid cycle (completes the breakdown of 
glucose) 

!  Oxidative phosphorylation (accounts for most of 
the ATP synthesis) 
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Figure 9.UN05 
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Figure 9.6-1 
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Figure 9.6-2 
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Figure 9.6-3 
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BioFlix: Cellular Respiration 
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!  The process that generates most of the ATP is 
called oxidative phosphorylation because it is 
powered by redox reactions 
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!  Oxidative phosphorylation accounts for almost 
90% of the ATP generated by cellular respiration 

!  A smaller amount of ATP is formed in glycolysis 
and the citric acid cycle by substrate-level 
phosphorylation 

!  For each molecule of glucose degraded to CO2 
and water by respiration, the cell makes up to 32 
molecules of ATP  

32



© 2014 Pearson Education, Inc. 

Figure 9.7 
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Concept 9.2: Glycolysis harvests chemical 
energy by oxidizing glucose to pyruvate 
!  Glycolysis (“sugar splitting”) breaks down glucose 

into two molecules of pyruvate 

!  Glycolysis occurs in the cytoplasm and has two 
major phases 

!  Energy investment phase 

!  Energy payoff phase 

!  Glycolysis occurs whether or not O2 is present 
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Figure 9.UN06 
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Figure 9.8 
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Figure 9.9a 
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Figure 9.9aa-1 

GLYCOLYSIS: Energy Investment Phase 

Glucose 

38

© 2014 Pearson Education, Inc. 

Figure 9.9aa-2 
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Figure 9.9aa-3 
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Figure 9.9ab-1 
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Figure 9.9ab-2 
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Figure 9.9ab-3 
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Figure 9.9b 

GLYCOLYSIS: Energy Payoff Phase 

Glycer- 
aldehyde 

3-phosphate 
(G3P) 

Triose 
phosphate 

dehydrogenase 

6 1,3-Bisphospho- 
glycerate 

3-Phospho- 
glycerate 

2-Phospho- 
glycerate 

Phosphoenol- 
pyruvate (PEP) 

Pyruvate 

Phospho- 
glycerokinase 

Phospho- 
glyceromutase 

Enolase Pyruvate 
kinase 

2 NAD+ 

7 8 9 10 

2 NADH 
+ 2 H+ 

2 

2 

2 
2 

2 2 2 
2 

2 

2 2 H2O ATP ATP 
ADP ADP 

44

© 2014 Pearson Education, Inc. 

Figure 9.9ba-1 
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Figure 9.9ba-2 
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Figure 9.9ba-3 
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Figure 9.9bb-1 
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Figure 9.9bb-2 
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Figure 9.9bb-3 
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Concept 9.3: After pyruvate is oxidized, the 
citric acid cycle completes the energy-yielding 
oxidation of organic molecules 
!  In the presence of O2, pyruvate enters the 

mitochondrion (in eukaryotic cells) where the 
oxidation of glucose is completed 
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Oxidation of Pyruvate to Acetyl CoA 

!  Before the citric acid cycle can begin, pyruvate 
must be converted to acetyl Coenzyme A (acetyl 
CoA), which links glycolysis to the citric acid cycle 

!  This step is carried out by a multienzyme complex 
that catalyses three reactions 
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Figure 9.UN07 
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Figure 9.10 
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The Citric Acid Cycle 

!  The citric acid cycle, also called the Krebs cycle, 
completes the break down of pyruvate to CO2 

!  The cycle oxidizes organic fuel derived from 
pyruvate, generating 1 ATP, 3 NADH, and 1 
FADH2 per turn 
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Figure 9.11 
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Figure 9.11a 
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Figure 9.11b 
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!  The citric acid cycle has eight steps, each 
catalyzed by a specific enzyme 

!  The acetyl group of acetyl CoA joins the cycle by 
combining with oxaloacetate, forming citrate 

!  The next seven steps decompose the citrate back 
to oxaloacetate, making the process a cycle 

!  The NADH and FADH2 produced by the cycle 
relay electrons extracted from food to the electron 
transport chain 
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Figure 9.UN08 
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Figure 9.12-1 
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Figure 9.12-2 
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Figure 9.12-3 
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Figure 9.12-4 

Acetyl CoA 

H2O 

+ H+ 

Oxaloacetate 

CoA-SH 

Citrate 

α-Ketoglutarate 
CoA-SH 

NAD+ 

CO2 

NADH 

CO2 NAD+ 

NADH 

+ H+ 

Succinyl 
CoA 

CITRIC 
ACID 

CYCLE 

Isocitrate 

1 

2 

4 

3 

64



© 2014 Pearson Education, Inc. 

Figure 9.12-5 
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Figure 9.12-6 
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Figure 9.12-7 
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Figure 9.12-8 
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Figure 9.12a 
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Figure 9.12b 
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Figure 9.12c 
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Figure 9.12d 
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Concept 9.4: During oxidative phosphorylation, 
chemiosmosis couples electron transport to 
ATP synthesis 
!  Following glycolysis and the citric acid cycle, 

NADH and FADH2 account for most of the energy 
extracted from food 

!  These two electron carriers donate electrons to the 
electron transport chain, which powers ATP 
synthesis via oxidative phosphorylation 
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The Pathway of Electron Transport 

!  The electron transport chain is in the inner 
membrane (cristae) of the mitochondrion 

!  Most of the chain’s components are proteins, 
which exist in multiprotein complexes 

!  The carriers alternate reduced and oxidized states 
as they accept and donate electrons 

!  Electrons drop in free energy as they go down the 
chain and are finally passed to O2, forming H2O 
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Figure 9.UN09 
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Figure 9.13 
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Figure 9.13a 
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Figure 9.13b 
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!  Electrons are transferred from NADH or FADH2 to 
the electron transport chain 

!  Electrons are passed through a number of proteins 
including cytochromes (each with an iron atom) 
to O2 

!  The electron transport chain generates no ATP 
directly 

!  It breaks the large free-energy drop from food to 
O2 into smaller steps that release energy in 
manageable amounts 79
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Chemiosmosis: The Energy-Coupling 
Mechanism 
!  Electron transfer in the electron transport chain 

causes proteins to pump H+ from the mitochondrial 
matrix to the intermembrane space 

!  H+ then moves back across the membrane, 
passing through the protein complex, ATP 
synthase  

!  ATP synthase uses the exergonic flow of H+ to 
drive phosphorylation of ATP 

!  This is an example of chemiosmosis, the use of 
energy in a H+ gradient to drive cellular work 80
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Figure 9.14 
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Video: ATP Synthase 3-D Structure, Top View 
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Video: ATP Synthase 3-D Structure, Side View 

83

© 2014 Pearson Education, Inc. 

Figure 9.15 
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Figure 9.15a 
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Figure 9.15b 
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!  The energy stored in a H+ gradient across a 
membrane couples the redox reactions of the 
electron transport chain to ATP synthesis 

!  The H+ gradient is referred to as a proton-motive 
force, emphasizing its capacity to do work 
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An Accounting of ATP Production by Cellular 
Respiration 
!  During cellular respiration, most energy flows in 

this sequence:  

 glucose → NADH → electron transport chain → 
proton-motive force → ATP 

!  About 34% of the energy in a glucose molecule is 
transferred to ATP during cellular respiration, 
making about 32 ATP 

!  There are several reasons why the number of ATP 
is not known exactly 
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Figure 9.16 
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Figure 9.16a 
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Figure 9.16b 
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Figure 9.16c 
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Figure 9.16d 
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Concept 9.5: Fermentation and anaerobic  
respiration enable cells to produce ATP without 
the use of oxygen 
!  Most cellular respiration requires O2 to produce 

ATP 

!  Without O2, the electron transport chain will cease 
to operate 

!  In that case, glycolysis couples with anaerobic 
respiration or fermentation to produce ATP 
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!  Anaerobic respiration uses an electron transport 
chain with a final electron acceptor other than O2, 
for example sulfate 

!  Fermentation uses substrate-level phosphorylation 
instead of an electron transport chain to generate 
ATP 
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Types of Fermentation 

!  Fermentation consists of glycolysis plus reactions 
that regenerate NAD+, which can be reused by 
glycolysis 

!  Two common types are alcohol fermentation and 
lactic acid fermentation 
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!  In alcohol fermentation, pyruvate is converted to 
ethanol in two steps 

!  The first step releases CO2  

!  The second step produces ethanol 

!  Alcohol fermentation by yeast is used in brewing, 
winemaking, and baking 
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Figure 9.17 
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Figure 9.17a 
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Figure 9.17b 
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Animation: Fermentation Overview 
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!  In lactic acid fermentation, pyruvate is reduced 
by NADH, forming lactate as an end product, with 
no release of CO2 

!  Lactic acid fermentation by some fungi and 
bacteria is used to make cheese and yogurt 

!  Human muscle cells use lactic acid fermentation to 
generate ATP when O2 is scarce 
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Comparing Fermentation with Anaerobic and 
Aerobic Respiration 
!  All use glycolysis (net ATP = 2) to oxidize glucose 

and harvest chemical energy of food 

!  In all three, NAD+ is the oxidizing agent that 
accepts electrons during glycolysis 
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!  The processes have different mechanisms for 
oxidizing NADH:  

!  In fermentation, an organic molecule (such as 
pyruvate or acetaldehyde) acts as a final electron 
acceptor 

!  In cellular respiration electrons are transferred to 
the electron transport chain 

!  Cellular respiration produces 32 ATP per glucose 
molecule; fermentation produces 2 ATP per 
glucose molecule  
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!  Obligate anaerobes carry out fermentation or 
anaerobic respiration and cannot survive in the 
presence of O2 

!  Yeast and many bacteria are facultative 
anaerobes, meaning that they can survive 
using either fermentation or cellular respiration 

!  In a facultative anaerobe, pyruvate is a fork in 
the metabolic road that leads to two alternative 
catabolic routes 
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Figure 9.18 
Glucose 

Glycolysis CYTOSOL 

Pyruvate 

No O2 present: 
Fermentation 

O2 present: 
  Aerobic cellular 
    respiration 

Ethanol, 
lactate, or 

other products 

MITOCHONDRION 
Acetyl CoA 

CITRIC 
ACID 

CYCLE 

106

© 2014 Pearson Education, Inc. 

The Evolutionary Significance of Glycolysis 

!  Ancient prokaryotes are thought to have used 
glycolysis long before there was oxygen in the 
atmosphere 

!  Very little O2 was available in the atmosphere until 
about 2.7 billion years ago, so early prokaryotes 
likely used only glycolysis to generate ATP 

!  Glycolysis is a very ancient process 
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Concept 9.6: Glycolysis and the citric acid cycle 
connect to many other metabolic pathways 
!  Gycolysis and the citric acid cycle are major 

intersections to various catabolic and anabolic 
pathways 
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The Versatility of Catabolism 

!  Catabolic pathways funnel electrons from many 
kinds of organic molecules into cellular respiration 

!  Glycolysis accepts a wide range of carbohydrates 

!  Proteins must be digested to amino acids; amino 
groups can feed glycolysis or the citric acid cycle 
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!  Fats are digested to glycerol (used in glycolysis) 
and fatty acids (used in generating acetyl CoA)  

!  Fatty acids are broken down by beta oxidation 
and yield acetyl CoA 

!  An oxidized gram of fat produces more than twice 
as much ATP as an oxidized gram of carbohydrate 
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Figure 9.19-1 
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Figure 9.19-2 
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Figure 9.19-3 
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Figure 9.19-4 
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Figure 9.19-5 
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Biosynthesis (Anabolic Pathways) 

!  The body uses small molecules to build other 
substances 

!  These small molecules may come directly from 
food, from glycolysis, or from the citric acid cycle 
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Regulation of Cellular Respiration via Feedback 
Mechanisms 
!  Feedback inhibition is the most common 

mechanism for metabolic control 

!  If ATP concentration begins to drop, respiration 
speeds up; when there is plenty of ATP, 
respiration slows down 

!  Control of catabolism is based mainly on 
regulating the activity of enzymes at strategic 
points in the catabolic pathway 

117

© 2014 Pearson Education, Inc. 

Figure 9.20 
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Figure 9.UN10a 
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Figure 9.UN10b 
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Figure 9.UN11 
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Figure 9.UN12 
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Figure 9.UN13 
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Figure 9.UN14 
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Figure 9.UN15 
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Figure 9.UN16 
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Figure 9.UN17 
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